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An explicit form of the equations of motion of non-holonomic systems with 
higher-order constraints is studied and a field method /l/ is used to 
integrate them. Various methods of integrating the equations of motion 
of non-holonomic systems were discussed earlier in 12-71. The 
generalization of the Hamilton-Jacobi method to non-holonomic systems has 
strict limitations f5, 61. The field method 111 was extended in 141 to 
cover non-holonomic systems with first-order constraints. 

1. Let the position of a mechanical system be described by the generalized coordinates 
qS (s= 1,...,n) and m-th order constraints of the type 

9$ = qj) (Bb'Pl',. . .,q;m-'). @,"'. 0 (8 = n-g) (1.1) 

Bere and henceforth ~=i,...9&s,h=i,..., n, 0, Y = 1, ., e; n = 0, 1, 2, . 
The equations of motion of the system are obtained in the form /9/ 

d BT --_ 
dt aq; 

Let us write 

Eqs.fl.2) will now become 

(‘4 

(1.4) 

Let us consider the explicit form of Eqs.(l.l) and f1.4). 
When m=b, Eqs.(l..l) are holonomic and the order of Eqs.tl.4) is 2~. Thus we have a 

holonomic system with redundant coordinates. Differentiating Eqs.(l.l) twice with respect to 
t, we obtain 

(1.5) 

Eqs.gl.4) are linear in qs", and Eqs.tl.41, (1.5) can be solved in generalized coordi- 
nates 

8” = hs (9k. 8~‘s t) 
(1.6) 

The order of Eqs.tl.1) and (1.4) is 2e, and that of Eq.tl.6) is 272. In order to obtain 
fr,utr Eqs.(1.6) the solution of Eqs.(l.l) and (1.4) for initial conditions (4s)0. (qS&, we must 
impose the following constraints on (q.&. &)o: 
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When m= 1, Eqs.(l.l) will represent non-holonomic first-order constraints, and we 
shall have the problems of non-holonomic first-order systems. Differentiating (1.1) with 
respect to t, we obtain 

(2.7) 

Eqs.(l.4) and (1.8) yield the generalized accelerations 4;. in the form (1.6). The 
order of Eqs.fl.1) and (1.4) is Q+ i?E. In order to obtain from Eqs.(1.6) the solution of 
Eqs.ll.1) and (l-4) with initial conditions (~~)~,(~~.)~, we can impose the fallowing constraints 
on &A. (qS% (Qe+R)o = e@ ((P&J. (q,J',')o, 0) (f.9) 

When m= 2, Eqs.(l.l) will represent non-holonomic second-order constraints. 
l@g/aq(m' 

If 

1ineaYr. 
contain no q”,. then Eqs.(l.4) will be linear in q*", otherwise they will be non- 

We assume that the system of Eqs.(l.l) and (1.4) has a solution in q*‘., and in this 
case we can write them in the form (1.6). 

When m>2, the order of Eqs.(1.2) will range from 2e to me, depending on the form 
of ~~~l~~(rn) If the higher-order differential of the generalized coordinates in t is a(@~ I< 

W, then &.differentiating Eqs.fl.2) m- 2 times with respect to t (f<2) or m--l times 
with respect to t(l> 2), their order will become ma. Let us combine these equations with 
(l.l), and assume that the system can be solved for Qp). 

Q!“’ = hs (Qk, qk’, .> 9k @‘-*), t) (rl > 2) (1.10) 

Then, in order to obtain from Eq.(l.lO) a solution of Eqs.(l.l) and (1.4) with initial 
conditions (g&, (q*.)e,we can impose constraints on Eq.(1.2). For example, when Z-=1, m= 4, 

we have the following constraints: 

T (fe+,)o (aph + (f,). = 0 z Kfk+&a @p& f (f,,,)o (+,ol -f- (f,‘)o = 0 
0 

(1.11) 

When 1-3, m -4, we have the constraints corresponding to the first equation of (1.11) 
only, etc. 

Thus we can write the equations of motion for the general non-holonomic na-th order 
systems in the following explicit form: 

qirn' = h, (Qk, 'jk, . . I, Q',m-", t) (m&2) (1.12) 

Let us now transform the equations of motion (1.12) to a system of first-order equations. 
Let (m-1) %=PS, Znts =n;7 . .* q*_1)n+s9‘q 

Then Eqs.fl.12) will take the form of a standard system of equations 

2. Let us consider the generalization of the field method. Using the field method /I, 
81 we select a variable, e.g. z1 
(A = 2, . . ., nn): 

as a function of time t and of the remaining variables zd 

z, = 1‘ (t, IA) (2.1) 

Differentiating Eq.(2.1) with respect to t and using Eqs.(l.l3), we obtain 

(2.2) 

We shall call the quasilinear Eq.(2.2) the fundamental partial differential equation. 
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If the complete solution of Eq.(2.2) has the form 

s, = lb(t, .e,, C,) (A* = 2,. ., mn; a = 1, . . .t 4 (2.3) 

then substitution of expression (2.3) will yield an id.entity. Let us denote the initial 
values of the field variables by 

z,(O)=z,, (a=l,...,M (2.4) 

Substituting expression (2.4) into (2.3) and denoting one constant, e.g. .C,. by 2% 
and the remaining constants by C,,we obtain 

5, = U (t, ZA, %,,. cA) (2.5) 

It can be proved that /I/ when 
det (6%/dCAcb,) # 0 

(2.6) 

the solution of Eqs.(1.13) will be given, by the initial conditions, by relation (2.5) and 
we shall have mn- 1 for CAau/XA= 0 (A = 2,...,1+ 

It should be noted that the order of the equations increases during the passage from 
(1.4) to (1.12). If the order increases by one, Eqs.(1.4) will become 28 constraints for 
the initial conditions. If the order is increased by two, Eqs.(1.4) and their differentials 
with respect to t will become 4e constraints for initial conditions, etc. 

Using this method we can, in principle, integrate the equations of motion of non- 
holonomic m-th order systems. Using the field method we can choose the field variable so as 
to solve Eq.(2.2) easily. The main difficulty of this method lies in+finding the solution 
of (2.2). However, having obtained one specific solution of this equation we can obtain the 
solution of the system from Eq.(2.5). 

3. Example 3. Let us consider the motion of a point of unity mass, acted upon by the 
force FX= F,= 0, F,= k= con% where the constaint equation has the form 

z" = &"' + l/i$tZy". (3.1) 

Eqs.(1.2) yield 
2" + t (z” - k) = 0, y” + m (I” - k) = 0 (3.2) 

Differentiating (3.2) with respect to t, adding the result to (3.1) and assuming that 
z1 = z, -0% = II, zg = z, we obtain 

Let t, = ~1 (t, z*,, zs. ., Q). The basic Eq.(2.2) yields 

(3.4) 

Let us assume that the complete solution of this equation has the form 

a= u = fo (1) + 5 fA (1) IA 

A==2 

Substituting (3.5) into (3.4) and equating the free term and terms containing zl.zIll..., =P, 
we obtain 

k kt 
fo’+fr-li_++fD i+t*- - - 0, fr’ = 0, jJ’ = 0, f,’ - 1 = 0 

fs’ + fr = 0, fs’ + f* = 0, f,’ + fr = 0, f@’ + fs = 0 

h’fh-f --?- 
t 

7 ~+t”--fo----O IfP-- 

Integrating, taking the initial conditions C,=z,,- i CArA (Ci = fi(to)) into account, and 
A=% 

substituting into (3.41, we obtain 

z~=u=z,o-- i CAZA~+k(C~-CB-C,)-k((C~-CII-C,)~+ 
*=a 

'h Cd'- (G +I/*) (V-1 + t' ~(t)--l+C,t)+Cp~a++~*+(C‘+t)Y+ 

(3.6) 
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(3.7) 

(G- w a + tc, - Cd) tr + (C, - w - WI t? + PA- Cd + ‘la cd*) 5* + 

{W* - G - C4) l/i+ C,(i + E) - CI fcjT.c, (t) + c,t + c, + 

w - % I/i+pL (ql a-*, L (f) = In (t + y-cp) 

The algebraic equations au/ac,=o (A = 2,...,$) yield 

Substituting expressions (3.7) into (3.61, we obtain 

5, = 40 + z,,t i V*t& -I- 'is (k - ?0)fL (t) + tI%f (0 - tl (3.8) 

Relations (3.7) and (3.8) represent the solution of Eqs.(3.4) for initial conditions 
s*(O) = SW (a = I, . . .‘ 9). 

Finally we obtain the solution of the initial problem. The increase in the order on 
passing from (3.2) to (3.3) should be noted. Constraints (3.2) imposed on the initial 
accelerations yield 

X70 = 0, r&i-f- (WJ- k) = 0 (3.9) 

Substituting relations (3.9) into (3.7) and (3.81, we obtain a solution containing seven 
constants corresponding to the order of the system (3.11, (3.21. 

Empte 2. (Appel's example). In AppeL's example the Lagrange function and constraint 
equation have the form 

Let *I = 2, ps = Y, gs = z. Differentiating the last equation of (3.10) with respect 
we obtain a second-order constraint 

gs" z bn-'(a'@" + gs'ps")(91'~+ rEr.')P 

Eqs.(l.Zf yield 

from which we obtain, taking into account relations (3.10) and (3.111 and assuming that 
21 = Ql, +!a = % P* = Pa. =>+ = =&, zp' = %I. rJ* = zs, ++' = --&,ir~, 5~’ = --Gz&zs, me’ = -4 

(C = gba/(aS -+ b’“) 
Let 

.Q = i‘ (8, 1,. q, ., zd 
Then the basis Eq.12.2) will yield 

Noting that 

we obtain 

(3.10) 

to e, 

(3.11) 

(3.12)~ 

(3.13} 

Let us write the solution in the foxm 

+* = 8 = fi -t- fg51 t f.&* + f& “I- 164 i- fez5 (f, = f, (9% a = 1, . . I, 61 

and substitute it into Eq.(3.13). Equating the free term and terms containing 5,+ . . . z~, we 
obtain 

Integration yields 

fi‘ + (fsA + fsB C fdf, -t- (1 - fsA - faG = 0 
fa’ + &A + f@ -I- f&a = 0 (a = 2, 3. 4, 5. 6) 



cl!4 = u = fl f (AC, -i- EC, + C,)W(C, + G [(AC, + BC# - 1): - 
‘Is (AC* + BC, + c,)t*l + C& + cs* + C,% -I- ai -I- Ced 

Let the initial conditions be 
Za (0) I-= Z&@ (a = i, . . .,B) 

Substituting (3.15) into (3,14), we obtain 

c, = ze - c9&, - C,%o - C‘% - Cf.%@ - c&i, 

and we follow this by eliminating C, from (3.14). 
Algebraic Eqs. (2.5) yield 

suiac, = 0 (a = 2, 3, 4, 5, 6) 

Putting C, =O and simplifying, we obtain 
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@lb) 

Substituting these expressions into (3.14) and taking into account Eqs.(3.16), we obtain 

3s = re - Gt (3.18) 

(3.15) 

(3.16) 

(3.17) 

Thus relations (3.17), (3.18) represent a solution of system (3.12) with initial con- 
ditions (3.15). 

Finally we obtain the solution of Appel's problem. Its order is equal to five, and the 
order of system (3.12) is six. In order to obtain the solution of the problem we can impose 
a constraint on the constantsin (3.17) and (3.18). It represents a restriction imposed on 
the non-holonomic constraint for the initial conditions, i.e. 

This implies that relations (3.17) and (3.19) represent a solution of the Appel's 
problem and contain five constants. 
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